• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Linear Programming Algorithms Using Least-Squares Method

    Thumbnail
    View/Open
    kong_seunghyun_200705_phd.pdf (514.6Kb)
    Date
    2007-04-04
    Author
    Kong, Seunghyun
    Metadata
    Show full item record
    Abstract
    This thesis is a computational study of recently developed algorithms which aim to overcome degeneracy in the simplex method. We study the following algorithms: the non-negative least squares algorithm, the least-squares primal-dual algorithm, the least-squares network flow algorithm, and the combined-objective least-squares algorithm. All of the four algorithms use least-squares measures to solve their subproblems, so they do not exhibit degeneracy. But they have never been efficiently implemented and thus their performance has also not been proved. In this research we implement these algorithms in an efficient manner and improve their performance compared to their preliminary results. For the non-negative least-squares algorithm, we develop the basis update technique and data structure that fit our purpose. In addition, we also develop a measure to help find a good ordering of columns and rows so that we have a sparse and concise representation of QR-factors. The least-squares primal-dual algorithm uses the non-negative least-squares problem as its subproblem, which minimizes infeasibility while satisfying dual feasibility and complementary slackness. The least-squares network flow algorithm is the least-squares primal-dual algorithm applied to min-cost network flow instances. The least-squares network flow algorithm can efficiently solve much bigger instances than the least-squares primal-dual algorithm. The combined-objective least-squares algorithm is the primal version of the least-squares primal-dual algorithm. Each subproblem tries to minimize true objective and infeasibility simultaneously so that optimality and primal feasibility can be obtained together. It uses a big-M to minimize the infeasibility. We developed the techniques to improve the convergence rates of each algorithm: the relaxation of complementary slackness condition, special pricing strategy, and dynamic-M value. Our computational results show that the least-squares primal-dual algorithm and the combined-objective least-squares algorithm perform better than the CPLEX Primal solver, but are slower than the CPLEX Dual solver. The least-squares network flow algorithm performs as fast as the CPLEX Network solver.
    URI
    http://hdl.handle.net/1853/14529
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Industrial and Systems Engineering Theses and Dissertations [1457]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology