• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Non-destructive Electrical Characterization of Controlled Waspaloy Microstructures

    Thumbnail
    View/Open
    v_sivakumar_g_kelekanjeri_200705_phd.pdf (13.86Mb)
    Date
    2007-04-06
    Author
    G. Kelekanjeri, V. Siva Kumar
    Metadata
    Show full item record
    Abstract
    In this research, controlled Waspaloy microstructures were produced with the objective of studying microstructural evolution in this alloy via electrically-based ac/dc non-destructive techniques. Correlations were developed between electrical measurements and alternate characterization techniques such as Ultra Small Angle X-ray Scattering (USAXS), Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) to gain a complete understanding of the microstructural transformations and the associated mechanisms. Three different sets of controlled microstructures were produced in this research. In Set I microstructures, matrix (gamma) grain sizes of 13, 52 and 89 micrometers were obtained after solution-treatments at 1045 and 176;C, 1090 and 176;C and 1145 and 176;C respectively. A vacancy stabilization treatment at 1045 and 176;C followed after which, the specimens were aged at 800 and 176;C for times ranging from 0.1 hrs to 100 hrs to vary the gamma prime precipitate size distribution. In Sets II and III, the solution-treatment was only conducted at 1145 and 176;C, with the stabilization treatment conducted only in Set II. Subsequently, aging experiments were conducted at 725 and 176;C (or 700 and 176;C in Set II), 800 and 176;C and 875 and 176;C for times up to 100 hrs. DC four-point probe resistivity of specimens increased to a maximum upon initial aging from the solution-treated condition and showed a decreasing trend thereafter with successive aging. This, in addition to complementary evidence from SEM and USAXS, led to the conclusion that gamma prime nucleation-growth was complete by the time the resistivity maximum was observed. Resistivity variations that ensued upon successive aging after the maximum were attributed to microstructural/compositional changes due to gamma prime coarsening. The height of the maximum decreased drastically with increase in aging temperature from 725 and 176;C to 800 and 176;C, while the resistivity did not increase from the solution-treated condition upon aging at 875 and 176; C. Coarsening studies based on USAXS analysis indicated an LSW type volume diffusion mechanism of coarsening in Waspaloy, with an average coarsening rate constant of 3.25x10-29 [m3/sec] for Set I specimens aged at 800 and 176;C. Analytical and Finite Element (FE) models of two-probe impedance and dc four-point probe resistivity methods were developed to gain insight into the measured response and the accurate determination of material properties. AFM-based localized electrical examination of sub-grain Waspaloy microstructures was successfully conducted using electrostatic force microscopy (EFM), scanning Kelvin probe microscopy (SKPM) and current-AFM (I-AFM) electrical modes. I-AFM experiments revealed that the conductivity of the gamma prime phase was lower than that of the gamma phase.
    URI
    http://hdl.handle.net/1853/14561
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Materials Science and Engineering Theses and Dissertations [986]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology