• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design and Control of a New Reconfigurable Robotic Mobility Platform

    Thumbnail
    View/Open
    johns_byron_e_200705_mast.pdf (3.216Mb)
    Date
    2007-04-05
    Author
    Johns, Byron Edward
    Metadata
    Show full item record
    Abstract
    The development of a new family of robotic vehicles for use in the exploration of Mars and other remote planets is an ongoing process. Current rovers have to traverse rough terrain and be able to withstand various conditions on Mars. The goal of this project is to design a new Mars rover mobility system that performs to optimum capability. This project will involve the design and control of a robot that will use wheels, as well as legs, allowing the robot to reconfigure itself to adapt to its current environment and traverse various terrains. This new reconfigurable hybrid robotic vehicle, Byrobot (named after the student), will have a six-legged mobility design for walking. Each leg will have 3 degrees of freedom, controlled by 3 separate servos, for the movement of the legs. Byrobot will also have 4 wheels each directly attached to the shaft of a DC motor, for four-wheel differential drive. By having these two mobility systems, Byrobot will be able to operate in various environments, by capitalizing on the advantages of both legged and wheeled robots. The CAD designing for this new robot is done on Pro-Engineer, and mechanisms and animations will be run to test movement of parts. The actual robot hardware will then be constructed in the Georgia Tech MRDC machine shop. The control system for the robot will be run by the Eyebot, which uses a 25MHz 32bit Controller (Motorola 68332), as well as the SSC-32 Servo Controller from Lynxmotion. This new robotic mobility platform will facilitate future Mars exploration.
    URI
    http://hdl.handle.net/1853/14632
    Collections
    • Georgia Tech Theses and Dissertations [23403]
    • School of Mechanical Engineering Theses and Dissertations [4008]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology