• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Space Systems Design Lab (SSDL)
    • Space Systems Design Lab Technical Papers
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Space Systems Design Lab (SSDL)
    • Space Systems Design Lab Technical Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Entry Descent and Landing Challenges of Human Mars Exploration

    Thumbnail
    View/Open
    AAS_20GN&C_2006-072.pdf (901.8Kb)
    Date
    2006-02
    Author
    Wells, Grant William
    Lafleur, Jarret M.
    Verges, Amanda
    Manyapu, Kavya
    Christian, John A., III
    Lewis, Charity
    Braun, Robert D.
    Metadata
    Show full item record
    Abstract
    Near-term capabilities for robotic spacecraft include a target of landing 1 - 2 metric ton payloads with a precision of about 10 kilometers, at moderate altitude landing sites (as high as +2 km MOLA). While challenging, these capabilities are modest in comparison to the requirements for landing human crews on Mars. Human Mars exploration studies imply the capability to safely land 40 - 80 metric ton payloads with a precision of tens of meters, possibly at even higher altitudes. New entry, descent and landing challenges imposed by the large mass requirements of human Mars exploration include: (1) the potential need for aerocapture prior to entry, descent and landing and associated thermal protection strategies, (2) large aeroshell diameter requirements, (3) severe mass fraction restrictions, (4) rapid transition from the hypersonic entry mode to a descent and landing configuration, (5) the need for supersonic propulsion initiation, and (6) increased system reliability. This investigation explores the potential of extending robotic entry, descent and landing architectures to human missions and highlights the challenges of landing large payloads on the surface of Mars.
    URI
    http://hdl.handle.net/1853/14772
    Collections
    • Space Systems Design Lab Technical Papers [108]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology