• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Homogenization and Bridging Multi-scale Methods for the Dynamic Analysis of Periodic Solids

    Thumbnail
    View/Open
    gonella_stefano_200708_phd.pdf (9.395Mb)
    Date
    2007-05-03
    Author
    Gonella, Stefano
    Metadata
    Show full item record
    Abstract
    This work investigates the application of homogenization techniques to the dynamic analysis of periodic solids, with emphasis on lattice structures. The presented analysis is conducted both through a Fourier-based technique and through an alternative approach involving Taylor series expansions directly performed in the spatial domain in conjunction with a finite element formulation of the lattice unit cell. The challenge of increasing the accuracy and the range of applicability of the existing homogenization methods is addressed with various techniques. Among them, a multi-cell homogenization is introduced to extend the region of good approximation of the methods to include the short wavelength limit. The continuous partial differential equations resulting from the homogenization process are also used to estimate equivalent mechanical properties of lattices with various internal configurations. In particular, a detailed investigation is conducted on the in-plane behavior of hexagonal and re-entrant honeycombs, for which both static properties and wave propagation characteristics are retrieved by applying the proposed techniques. The analysis of wave propagation in homogenized media is furthermore investigated by means of the bridging scales method to address the problem of modelling travelling waves in homogenized media with localized discontinuities. This multi-scale approach reduces the computational cost associated with a detailed finite element analysis conducted over the entire domain and yields considerable savings in CPU time. The combined use of homogenization and bridging method is suggested as a powerful tool for fast and accurate wave simulation and its potentials for NDE applications are discussed.
    URI
    http://hdl.handle.net/1853/16144
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Aerospace Engineering Theses and Dissertations [1440]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology