• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Oxide nanomaterials: synthesis, structure, properties and novel devices

    Thumbnail
    View/Open
    yang_rusen_200708_phd.pdf (13.63Mb)
    Date
    2007-06-22
    Author
    Yang, Rusen
    Metadata
    Show full item record
    Abstract
    One-dimensional and hierarchical nanostructures have acquired tremendous attention in the past decades due to their possible application. In spite of the rapid emergence of new morphologies, the underlying growth mechanism is still not well understood. The lack of effective p-type or n-type doping is another obstacle for many semiconducting nanomaterials. A deeper investigation into these structures and new methods to fabricate devices are of significant impact for nanoscience and nanotechnology. Motivated by a desire to understand the growth mechanism of nanostructures and investigate novel device fabrication method, the research described in this thesis carried out on the synthesis, characterization, and device fabrication of semiconducting nanostructures. The main focus of the research was on ZnO, SnO2, and Zn3P2 for their great capability for fundamental phenomena studying, promising applications in sensors and optoelectronics, and the potential generalization of results to other materials. Within this study the following goals have been achieved: 1) Improved understanding of polar-surface-induced growth mechanism in wurtzite-structured ZnO and generalization of this growth mechanism with the discovery and analysis of rutile ¨Cstructured SnO2, 2) observation of the significance of the transversal growth, which is usually ignored, in interpenetrative ZnO nanowires, 3) rational design and growth control over versatile nanostructures of ZnO and Zn3P2, and 4) conjunction of p-type Zn3P2 and n-type ZnO semiconducting nanostructures for device fabrications. The framework for the research is reviewed first in chapter 1. Chapter 2 gives the detailed experimental setup, synthesis procedure, and common growth mechanism for nanostructure growth. A detailed discussion on the growth of ZnO nanostructures in chapter 3 provides more insight into the polar-surface-induced growth, transversal growth, vapor-solid growth, and vapor-liquid-solid growth during the formation of nanostructures. Polar-surface-induced growth is also confirmed in the growth of SnO2 nanostructures, which is also included in chapter 2. Chapter 3 presents Zn3P2 nanostructures from the newly designed experiment setup and the device fabrication from ZnO and Zn3P2 crossed nanowires.
    URI
    http://hdl.handle.net/1853/16184
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Materials Science and Engineering Theses and Dissertations [986]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology