• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    VOF Based Multiphase Lattice Boltzmann Method Using Explicit Kinematic Boundary Conditons at the Interface

    Thumbnail
    View/Open
    maini_deepak_200708_mast.pdf (673.6Kb)
    Date
    2007-07-10
    Author
    Maini, Deepak
    Metadata
    Show full item record
    Abstract
    A VOF based multiphase Lattice Boltzmann method that explicitly prescribes kinematic boundary conditions at the interface is developed. The advantage of the method is the direct control over the surface tension value. The details of the numerical method are presented. The Saffman instability, Taylor instability, and flow of deformable suspensions in a channel are used as example-problems to demonstrate the accuracy of the method. The method allows for relatively large viscosity and density ratios.
    URI
    http://hdl.handle.net/1853/16240
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Mechanical Engineering Theses and Dissertations [4086]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology