• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Methodology to Link Cost and Reliability for Launch Vehicle Design

    Thumbnail
    View/Open
    krevor_zachary_c_200708_phd.pdf (10.40Mb)
    Date
    2007-06-28
    Author
    Krevor, Zachary Clemetson
    Metadata
    Show full item record
    Abstract
    This dissertation is focused on the quantitative metrics of performance, cost, and reliability for future launch vehicles. Methods are developed that hold performance constant for a required mission and payload so that cost and reliability can be traded. Reliability strategies such as reducing the number of engines, increasing the thrust-to-weight ratio, and adding redundant subsystems all increase launch vehicle reliability. However, there are few references that illustrate the cost of increasing launch vehicle reliability in a disciplined, integrated approach. For launch vehicle design, integrated performance, cost, and reliability disciplines are required to show the sensitivity of cost to different reliability strategies. A methodology is presented that demonstrates how to create the necessary launch vehicle reliability models and integrate them with the performance and cost disciplines. An integrated environment is developed for conceptual design that can rapidly assess thousands of launch vehicle configurations. The design process begins with a feasible launch vehicle configuration and its mission objectives. The performance disciplines, such as trajectory analysis, propulsion, and mass estimation are modeled to include the effects of using different reliability strategies. Reliability models are created based upon the launch vehicle configuration. Engine reliability receives additional attention because engines are historically one of the leading causes of launch vehicle failure. Additionally, the reliability of the propulsion subsystem changes dynamically when a launch vehicle design includes engine out capability. Cost estimating techniques which use parametric models are employed to capture the dependencies on system cost of increasing launch vehicle reliability. Uncertainty analysis is included within the cost and reliability disciplines because of the limited historical database for launch vehicles. Optimization is applied within the integrated design environment to find the best launch vehicle configuration based upon a particular weighting of cost and reliability. The results show that both the Saturn V and future launch vehicles could be optimized to be significantly cheaper, be more reliable, or have a compromise solution by illustrating how cost and reliability are coupled with vehicle configuration changes.
    URI
    http://hdl.handle.net/1853/16241
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Aerospace Engineering Theses and Dissertations [1440]

    Related items

    Showing items related by title, author, creator and subject.

    • A METHODOLOGY FOR CONDUCTING DESIGN TRADES FOR A SMALL SATELLITE LAUNCH VEHICLE WITH HYBRID ROCKET PROPULSION 

      Caglar, Havva Irem (Georgia Institute of Technology, 2021-07-28)
      The commercial space industry has recently seen a paradigm shift related to the launch of a small satellite into Low Earth Orbit. In the past, a small satellite was launched as a secondary payload with a medium or heavy ...
    • Comparison of Return to Launch Site Options for a Reusable Booster Stage 

      Hellman, Barry Mark (Georgia Institute of Technology, 2005-11-10)
      There is a major need in the U.S. Air Force to develop launch vehicles that can be used for Operational Responsive Spacelift and possibly be used for rapid global Strike. One strategy to achieve these mission goals is ...
    • Trajectory-based launch vehicle performance analysis for design-space exploration in conceptual design 

      Steffens, Michael (Georgia Institute of Technology, 2016-07-20)
      Trajectory optimization is an important part of launch vehicle conceptual design. Current methods for trajectory optimization involve numerical analysis, are computationally expensive and require trajectory experts in the ...

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology