• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Adaptive Estimation and Control with Application to Vision-based Autonomous Formation Flight

    Thumbnail
    View/Open
    sattigeri_ramachandra_j_200708_phd.pdf (1.547Mb)
    Date
    2007-05-17
    Author
    Sattigeri, Ramachandra Jayant
    Metadata
    Show full item record
    Abstract
    The role of vision as an additional sensing mechanism has received a lot of attention in recent years in the context of autonomous flight applications. Modern Unmanned Aerial Vehicles (UAVs) are equipped with vision sensors because of their light-weight, low-cost characteristics and also their ability to provide a rich variety of information of the environment in which the UAVs are navigating in. The problem of vision based autonomous flight is very difficult and challenging since it requires bringing together concepts from image processing and computer vision, target tracking and state estimation, and flight guidance and control. This thesis focuses on the adaptive state estimation, guidance and control problems involved in vision-based formation flight. Specifically, the thesis presents a composite adaptation approach to the partial state estimation of a class of nonlinear systems with unmodeled dynamics. In this approach, a linear time-varying Kalman filter is the nominal state estimator which is augmented by the output of an adaptive neural network (NN) that is trained with two error signals. The benefit of the proposed approach is in its faster and more accurate adaptation to the modeling errors over a conventional approach. The thesis also presents two approaches to the design of adaptive guidance and control (G&C) laws for line-of-sight formation flight. In the first approach, the guidance and autopilot systems are designed separately and then combined together by assuming time-scale separation. The second approach is based on integrating the guidance and autopilot design process. The developed G&C laws using both approaches are adaptive to unmodeled leader aircraft acceleration and to own aircraft aerodynamic uncertainties. The thesis also presents theoretical justification based on Lyapunov-like stability analysis for integrating the adaptive state estimation and adaptive G&C designs. All the developed designs are validated in nonlinear, 6DOF fixed-wing aircraft simulations. Finally, the thesis presents a decentralized coordination strategy for vision-based multiple-aircraft formation control. In this approach, each aircraft in formation regulates range from up to two nearest neighboring aircraft while simultaneously tracking nominal desired trajectories common to all aircraft and avoiding static obstacles.
    URI
    http://hdl.handle.net/1853/16272
    Collections
    • Georgia Tech Theses and Dissertations [22398]
    • School of Aerospace Engineering Theses and Dissertations [1342]
    • IRIM Theses and Dissertations [105]

    Related items

    Showing items related by title, author, creator and subject.

    • Dark-Adapting Glasses for Persons with Light Adaptation Problems 

      Ross, David A. (Georgia Institute of Technology, 2016-10-18)
      As people age, their ability to adapt to widely-changing light levels can diminish. Pupil response times increase and the pupil will not open as widely nor close as tightly as the person ages. Further, with age-related ...
    • Adaptive driver modeling using machine learning algorithms for the energy optimal planning of velocity trajectories for electric vehicles and realizing simultaneous lane keeping and adaptive speed regulation on accessible mobile robot testbeds 

      Waters, Thomas Robert (Georgia Institute of Technology, 2018-01-09)
      Part 1 Driver assistance systems show the potential to increase the fuel economy and optimize the range of standard and electric vehicles. Eco-driving focused systems optimize velocity trajectories with respect to energy ...
    • Built-In User Modelling Support, Adaptive Interfaces, and Adaptive Help in UIDE 

      Sukaviriya, Piyawadee (Noi); Foley, James D. (Georgia Institute of Technology, 1992)
      Developing an adaptive interface requires a user interface which can be adapted, a user model, and an adaptation strategy. Research on adaptive interfaces in the past lacks support from user interface tools which allow ...

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology