• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design, fabrication and characterization of III-nitride PN junction devices

    Thumbnail
    View/Open
    Jae_Limb_200708_phd.pdf (1.579Mb)
    Date
    2007-07-02
    Author
    Limb, Jae Boum
    Metadata
    Show full item record
    Abstract
    Design, fabrication and characterization of III-Nitride pn junction devices Jae Boum Limb 94 pages Directed by Dr. Russell D. Dupuis This dissertation describes an investigation of three types of III-nitride (AlInGaN) based p-n junction devices that were grown by metalorganic chemical vapor deposition (MOCVD). The three types of devices are Ultra-Violet (UV) avalanche photodiodes (APDs), green light emitting diodes (LEDs), and p-i-n rectifiers. For avalanche photodiodes, a material growth on low-dislocation density GaN substrates, processed with low-damage etching receipes and high quality dielectric passivations, were proposed. Using this technology, GaN APDs with optical gains greater than 3000, and AlGaN APDs showing true avalanche gains have been demonstrated. For green LEDs, the use of InGaN:Mg as the p-layer, rather than employing the conventional GaN:Mg has been proposed. Green LEDs with p-InGaN have shown higher emission intensities and lower diode series resistances compared to LEDs with p-GaN. Using p-InGaN layers, LEDs emitting at green and longer wavelengths have been realized. For p-i-n rectifiers, design, fabrication and characterization of device structures using the conventional mesa-etch configuration, as well as the full-vertical method have been proposed. High breakdown devices with low on-resistances have been achieved. Specific details on device structures, fabrication methods, and characterization results are discussed.
    URI
    http://hdl.handle.net/1853/16331
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology