• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Quantification and Analysis of the Geometric Parameters of the Total Cavo Pulmonary Connection Using a Skeletonization Approach

    Thumbnail
    View/Open
    krishnankuttyrema_resmi_200712_mast.pdf (2.014Mb)
    Date
    2007-08-24
    Author
    KrishnankuttyRema, Resmi
    Metadata
    Show full item record
    Abstract
    The Fontan repair is a three-stage palliative surgical procedure for single ventricle congenital heart diseases, ultimately resulting in the right heart bypass. This is accomplished by routing the systemic venous return directly to the lungs. Although this procedure reduces the mortality rate, its long-term outcome is still considered far from optimal. Over the years several modifications have been suggested, ultimately leading to the total cavopulmonary connection (TCPC), which is the current procedure of choice. A better understanding of the hemodynamics in the TCPC is critical for further optimization of the TCPC design and surgical planning, which may lead to improved surgical outcome. Recent experimental and numerical studies have focused on characterizing the fluid dynamics of the TCPC but to date no study has attempted to relate the geometry of the TCPC anatomies with their hemodynamic parameters. The present study therefore proposes to quantify the complex geometrical characteristics of patient-specific TCPC anatomies and correlate these characteristics with their hemodynamic efficiency. A technique using skeletonization approach is thus developed to achieve this goal. The centerline approximation of the TCPC geometry is used to extract main geometric parameters such as vessel area, curvature and offset. The developed methodology is then applied to characterize the shape of various TCPC templates including extra-cardiac (EC) and intra-atrial (IA) TCPCs, TCPCs with bilateral Superior Vena Cavae and geometries before the third stage. The obtained geometric parameters are then related to the TCPC hemodynamics, particularly to the power loss.
    URI
    http://hdl.handle.net/1853/19742
    Collections
    • Department of Biomedical Engineering Theses and Dissertations [575]
    • Georgia Tech Theses and Dissertations [23878]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology