• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Variability of the South Pacific Convergence Zone and its influence on the general atmospheric circulation

    Thumbnail
    View/Open
    widlansky_matthew_j_200712_mast.pdf (33.19Mb)
    Date
    2007-11-15
    Author
    Widlansky, Matthew Johnson
    Metadata
    Show full item record
    Abstract
    Intense atmospheric convection associated with the South Pacific Convergence Zone (SPCZ) significantly impacts basin-scale circulation patterns over the Pacific. We explore dynamical processes which foster changes in convection along the convergence zone. These forcings include strong moisture convergence and accumulation of wave energy in the boundary layer, as well as dynamical instability associated with moderate cross-equatorial wind bursts. A focus is applied to observing the dominant modes of variability on synoptic to intraseasonal timescales using a combination of satellite observations and NCEP reanalysis data. Accumulation of energy, due to negative stretching deformation, occurs with both tropical and extratropical modes suggesting that the SPCZ is an artifact of wide ranging modes. Signals of the dominant modes (inferred from fields of outgoing longwave radiation: OLR) are isolated using bandpass filtering techniques, which are then mapped in space and time using Principal Components from Empirical Orthogonal Function analyses. Variability of convective systems in the SPCZ is found to be significantly correlated with changes in the regional Hadley Circulation and the Pacific Walker cell. This co-variability presents the possibility of important teleconnection routes between the tropical West and East Pacific, as well as with the mid-latitude regions of the Northern and Southern Hemispheres. We test these interaction hypotheses by developing composites of the circulation patterns using dates of maximum convection events (regions of minimum OLR) in the SPCZ. Intensities of the large-scale circulations are measured using observations of stream function mass fluxes. Results suggest that deep convection maxima (minima) are associated with an increase (decrease) in the Walker Circulation. It is also illustrated how off-equatorial convection anomalies in the subtropical portion of the SPCZ may induce changes to the Hadley Circulation. Interactions with the zonal (Walker) and meridional (Hadley) circulations appear to have important consequences on the ability for wave energy to propagate through the tropical Pacific atmosphere. Examples include Northern Hemisphere cross-equatorial teleconnections through the Westerly Wind Duct in the upper branch of the Walker circulation and Rossby wave trains in the SPCZ, which may be partially governed by characteristics of the regional Hadley circulation.
    URI
    http://hdl.handle.net/1853/19766
    Collections
    • Georgia Tech Theses and Dissertations [22401]
    • School of Earth and Atmospheric Sciences Theses and Dissertations [516]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology