• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Toward the neurocomputer: goal-directed learning in embodied cultured networks

    Thumbnail
    View/Open
    chao_zenas_c_200712_phd.pdf (16.42Mb)
    Date
    2007-10-23
    Author
    Chao, Zenas C.
    Metadata
    Show full item record
    Abstract
    Brains display very high-level parallel computation, fault-tolerance, and adaptability, all of which are what we struggle to recreate in engineered systems. The neurocomputer (an organic computer built from living neurons) seems possible and may lead to a new generation of computing device that can operate in a brain-like manner. Cultured neuronal networks on multi-electrode arrays (MEAs) are one of the best candidates for the neurocomputer for their controllability, accessibility, flexibility, and the ability to self-organize. I explored the possibility of the neurocomputer by studying whether we can show goal-directed learning, one of the most fascinating behavior of brains, in cultured networks. Inspired by the brain, which needs to be embodied in some way and interact with its surroundings in order to give a purpose to its activities, we have developed tools for closing the sensory-motor loop between a cultured network and a robot or an artificial animal (an animat), termed a ¡§hybrot¡¨. In order to efficiently find an effective closed-loop design among infinite potential options, I constructed a biologically-inspired simulated network. By using this simulated network, I designed: (1) a statistic that can effectively and efficiently decode network functional plasticity, and (2) feedback stimulations and an adaptive training algorithm to encode sensory information and to direct network plasticity. By closing the sensory-motor loop with these decoding and encoding designs, we successfully demonstrated a simple adaptive goal-directed behavior: learning to move in a user-defined direction, and further showed that multiple tasks could be learned simultaneously. These results suggest that even though a cultured network lacks the 3-D structure of the brain, it still can be functionally shaped and show meaningful behavior. To our knowledge, this is the first demonstration of goal-directed learning in embodied cultured networks. Extending from these findings, I further proposed a research plan to optimize closed-loop designs for evaluating the maximal learning capacity (or even true intelligence) of the cultured network. Knowledge gained from effective closed-loop designs provides insights about learning and memory in the nervous system, which could influence the design of neurocomputers, future artificial neural networks, and more effective neuroprosthetics.
    URI
    http://hdl.handle.net/1853/19816
    Collections
    • Department of Biomedical Engineering Theses and Dissertations [575]
    • Georgia Tech Theses and Dissertations [23877]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology