Show simple item record

dc.contributor.authorZhao, Qien_US
dc.date.accessioned2008-02-07T18:42:26Z
dc.date.available2008-02-07T18:42:26Z
dc.date.issued2007-10-03en_US
dc.identifier.urihttp://hdl.handle.net/1853/19821
dc.description.abstractWith the emergence of computer networks as one of the primary platforms of communication, and with their adoption for an increasingly broad range of applications, there is a growing need for high-quality network traffic measurements to better understand, characterize and engineer the network behaviors. Due to the inherent lack of fine-grained measurement capabilities in the original design of the Internet, it does not have enough data or information to compute or even approximate some traffic statistics such as traffic matrices and per-link delay. While it is possible to infer these statistics from indirect aggregate measurements that are widely supported by network measurement devices (e.g., routers), how to obtain the best possible inferences is often a challenging research problem. We name this as "too little data" problem after its root cause. Interestingly, while "too little data" is clearly a problem, "too much data" is not a blessing either. With the rapid increase of network link speeds, even to keep sampled summarized network traffic (for inferring various network statistics) at low sample rates results in too much data to be stored, processed, and transmitted over measurement devices. In summary high-quality measurements in today's Internet is very challenging due to resource limitations and lack of built-in support, manifested as either "too little data" or "too much data". We present some new practices and proposals to alleviate these two problems.The contribution is four fold: i) designing universal methodologies towards ideal network traffic measurements; ii) providing accurate estimations for several critical traffic statistics guided by the proposed methodologies; iii) offering multiple useful and extensible building blocks which can be used to construct a universal network measurement system in the future; iv) leading to some notable mathematical results such as a new large deviation theorem that finds applications in various areas.en_US
dc.publisherGeorgia Institute of Technologyen_US
dc.subjectNetwork measurementsen_US
dc.subjectTraffic analysisen_US
dc.subjectData streamingen_US
dc.subjectPerformance evaluationen_US
dc.subjectStatistics counteren_US
dc.subject.lcshComputer networks
dc.subject.lcshRouting (Computer network management)
dc.subject.lcshInference
dc.subject.lcshNetwork performance (Telecommunication)
dc.subject.lcshStreaming technology (Telecommunications)
dc.subject.lcshTelecommunication Traffic
dc.titleTowards Ideal Network Traffic Measurement: A Statistical Algorithmic Approachen_US
dc.typeDissertationen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentComputingen_US
dc.description.advisorCommittee Chair: Xu, Jun; Committee Member: Ammar, Mostafa; Committee Member: Feamster, Nick; Committee Member: Ma, Xiaoli; Committee Member: Zegura, Ellenen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record