• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A rational design approach for the cryopreservation of natural and engineered tissues

    Thumbnail
    View/Open
    mukherjee_indra_n_200804_phd.pdf (5.236Mb)
    Date
    2008-01-02
    Author
    Mukherjee, Indra Neil
    Metadata
    Show full item record
    Abstract
    Key to the success of natural and engineered tissues becoming clinically available until needed is their long-term storage at low temperatures. This can be implemented by means of freezing or vitrification. To this end, vitrification offers an attractive approach for tissue banking by forming an amorphous glass both intra- and extracellularly and thereby avoiding the harmful effects of ice formation. Generally, high concentrations of cryoprotectants (CPAs) are used in conjunction with high cooling and warming rates to achieve this. However, hurdles associated with applying this technique include the ability to adequately deliver and remove CPAs due to cellular osmotic and cytotoxic effects as well as achieving adequate cooling and warming rates throughout the tissue to avoid ice formation. The aim of this work was to account for these factors in designing cryopreservation protocols for native and engineered tissues that had intrinsically different characteristics, including tissue size and extracellular matrix properties. The tissues investigated were two types of three-dimensional, cell encapsulated systems consisting of murine insulinomas and murine embryonic stem cells, and native articular cartilage. A mathematical 3-D CPA transport model was developed to predict cell volume excursions and intracellular CPA equilibration and applied to cryopreserve an engineered tissue. This thesis established a systematic methodology to design cryopreservation protocols using experimental measurements and a mathematical model for tissues.
    URI
    http://hdl.handle.net/1853/22579
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Chemical and Biomolecular Engineering Theses and Dissertations [1516]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology