• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mathematical modeling of diseases to inform health policy

    Thumbnail
    View/Open
    faissol_daniel_m_200808_phd.pdf (1022.Kb)
    Date
    2008-06-23
    Author
    Faissol, Daniel Mello
    Metadata
    Show full item record
    Abstract
    In this dissertation we present mathematical models that help answer health policy questions relating to HIV and Hepatitis C (HCV), and analyze bias in Markov models of disease progression. We begin by developing a Markov decision process model that examines the timing of testing and treatment for diseases with asymptomatic periods such as HCV. We explicitly consider secondary infections, false positives and negatives, and behavioral modification from information from test results. We derive sufficient conditions for testing and/or treating in a dynamic environment, i.e., when unscheduled patients arrive. We also develop a detailed simulation model for general testing and/or treating for HCV. A key finding is that the current policy recommendations on testing for HCV may be too restrictive, and that it is cost-effective to test the overall population if done at the appropriate times. The Markov models used in the study of HCV motivated the next topic where we examine bias in Markov models of diseases. We examine models in which the progression of the disease varies with severity and find sufficient conditions for bias to exist in models that do not allow for transition probabilities to change with disease severity. We apply the results to HCV and find that the bias is significant depending on the method used to aggregate the disease data. We close with a discussion on a specific question in HIV policy where we develop a Bernoulli process transmission model in which, for a given individual, each risky person-to-person contact is treated as an independent Bernoulli trial. Using the model and data from the Urban Men's Health Study, we estimate the affect that interventions at venues, namely bathhouses, in which high-risk behavior takes place would have on HIV transmission.
    URI
    http://hdl.handle.net/1853/24690
    Collections
    • Georgia Tech Theses and Dissertations [23403]
    • School of Industrial and Systems Engineering Theses and Dissertations [1432]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology