• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Problems and results in partially ordered sets, graphs and geometry

    Thumbnail
    View/Open
    biro_csaba_200808_phd.pdf (381.9Kb)
    Date
    2008-06-26
    Author
    Biro, Csaba
    Metadata
    Show full item record
    Abstract
    The thesis consist of three independent parts. In the first part, we investigate the height sequence of an element of a partially ordered set. Let $x$ be an element of the partially ordered set $P$. Then $h_i(x)$ is the number of linear extensions of $P$ in which $x$ is in the $i$th lowest position. The sequence ${h_i(x)}$ is called the height sequence of $x$ in $P$. Stanley proved in 1981 that the height sequence is log-concave, but no combinatorial proof has been found, and Stanley's proof does not reveal anything about the deeper structure of the height sequence. In this part of the thesis, we provide a combinatorial proof of a special case of Stanley's theorem. The proof of the inequality uses the Ahlswede--Daykin Four Functions Theorem. In the second part, we study two classes of segment orders introduced by Shahrokhi. Both classes are natural generalizations of interval containment orders and interval orders. We prove several properties of the classes, and inspired by the observation, that the classes seem to be very similar, we attempt to find out if they actually contain the same partially ordered sets. We prove that the question is equivalent to a stretchability question involving certain sets of pseudoline arrangements. We also prove several facts about continuous universal functions that would transfer segment orders of the first kind into segments orders of the second kind. In the third part, we consider the lattice whose elements are the subsets of ${1,2,ldots,n}$. Trotter and Felsner asked whether this subset lattice always contains a monotone Hamiltonian path. We make progress toward answering this question by constructing a path for all $n$ that satisfies the monotone properties and covers every set of size at most $3$. This portion of thesis represents joint work with David M.~Howard.
    URI
    http://hdl.handle.net/1853/24719
    Collections
    • Georgia Tech Theses and Dissertations [22401]
    • School of Mathematics Theses and Dissertations [399]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology