• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of a Collaborative Capability-Based Tradeoff Environment for Complex System Architectures

    Thumbnail
    View/Open
    AIAA_2006_728.pdf (606.0Kb)
    Date
    2006-01
    Author
    Biltgen, Patrick Thomas
    Ender, Tommer Rafael
    Mavris, Dimitri N.
    Metadata
    Show full item record
    Abstract
    The design of complex systems in the presence of changing requirements, rapidly evolving technologies, and design uncertainty continues to be a challenge. Furthermore, the design of future platforms must take into account the interoperability of a variety of heterogeneous systems and their role in a larger "system-of-systems." To date, methodologies to address the complex interactions and optimize the system at the macro-level have lacked a clear direction and structure and have largely been conducted in an ad-hoc fashion. Traditional optimization has centered around individual vehicles with little regard for the impact on the overall system. A key enabler for reduced cost and cycle time is the ability to rapidly analyze technologies and perform trade studies using a capability-based approach. While many entities have expressed a desire to perform capability-based design, the need for a structured discipline exists. This research will examine how collaboration for the design of such systems-of-systems can be enabled through the use of surrogate models and will demonstrate a top-down analysis methodology for the evaluation of systems and technologies with respect to desired capabilities. A technique for inverse design where any variable can be treated as an independent variable is made routine through the structured use of surrogate models and probability theory. For the testbed demonstration, a depoliticized, notional scenario was postulated to develop a testbed environment in which humanitarian aid and supplies must be delivered to forward-deployed troops for dispersal in a host country under fire.
    URI
    http://hdl.handle.net/1853/25168
    Collections
    • Aerospace Systems Design Laboratory Publications [297]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology