• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • The Wallace H. Coulter Department of Biomedical Engineering (BME)
    • Biomedical Engineering Technical Reports
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • The Wallace H. Coulter Department of Biomedical Engineering (BME)
    • Biomedical Engineering Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Classification of High Frequency Pupillary Responses using Schur Monotone Descriptors in Multiscale Domains

    Thumbnail
    View/Open
    04-29.pdf (253.7Kb)
    Date
    2004-09-21
    Author
    Shi, Bin
    Moloney, Kevin P.
    Pan, Ye
    Emery, V. Kathlene
    Vidakovic, Brani
    Jacko, Julie A.
    Sainfort, François
    Metadata
    Show full item record
    Abstract
    This paper addresses the problem of classifying users with different visual abilities based on their pupillary response data while performing computer-based tasks. Multiscale Schur Monotone (MSM) summaries of high frequency pupil diameter measurements are utilized as feature vectors (or input vectors) in this classification. Various MSM measures, such as Shannon, Picard, and Emlen entropies, the Gini coefficient and the Fishlow measure, are investigated to assess their discriminatory characteristics. A combination of classifiers, motivated by Bayesian paradigm, is proposed to minimize and stabilize the misclassification rate in training and test sets with the goal of improving classification accuracy. In addition, the issue of wavelet basis selection for optimal classification performance is discussed. The members of the Pollen wavelet library are included as competitors. The proposed methodology is validated with extensive simulation and applied to high-frequency pupil diameter measurements collected from 36 individuals with varying ocular abilities and pathologies. The expected misclassification rate of our procedure can be as low as 21% by appropriately choosing the Schur Monotone summary and using a properly selected wavelet basis.
    URI
    http://hdl.handle.net/1853/25853
    Collections
    • Biomedical Engineering Technical Reports [32]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology