• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • The Wallace H. Coulter Department of Biomedical Engineering (BME)
    • Biomedical Engineering Technical Reports
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • The Wallace H. Coulter Department of Biomedical Engineering (BME)
    • Biomedical Engineering Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Uncertainty Analysis in Using Markov Chain Model to Predict Roof Life Cycle Performance

    Thumbnail
    View/Open
    05-05.pdf (187.8Kb)
    Date
    2005
    Author
    Zhang, Yan
    Vidakovic, Brani
    Augenbroe, Godfried
    Metadata
    Show full item record
    Abstract
    Making decisions on building maintenance policies is an important topic in facility management. To evaluate different maintenance policies and make rational selection, both performance and maintenance cost of building components need to be of concern. For roofing sytem Markov Chain model has been developed to simulate the stochastic degrading process to evaluate the life cycle perfornance and cost. [Van Winden and Dekker 1998; Lounis et al. 1999] Taking value in a discrete state space, this model is especially appropriate when scaled rating regular inspections and related mainteance policies are implemented in large organizations. [Van Winden and Dekker 1998] However, many parameters in this Markov Chain model are associated with variance of significant magnitude. The propagation of these variances through the model will result in uncertainties in predicted life cycle performance and cost results. Without a solid uncertainty analysis on the simulation, decisions based on these simulation results can be unrealiable. In this paper we provide methods to estimate the range of parameter values and represent them in a probabilistic framwork. Monte Carlo method is used to analyze simulation output (life cycle cost and performance) variance propagated from these parameters through the model. These probablisitc informnation can be used to make better informed decisions. An example is provided to illustrate the Markov Chain model development, parameter identification method, Monte-Carlo uncertainty assessment and decision making with probabilistic information. It is shown that the uncertainty propagating through this process is not negligible and may significantly influence or even change the final decision
    URI
    http://hdl.handle.net/1853/26261
    Collections
    • Biomedical Engineering Technical Reports [32]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology