• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of poly(3-octylthiophene) thin films for regulating osteoblast growth

    Thumbnail
    View/Open
    rincon-rosenbaum_charlene_200812_phd.pdf (4.810Mb)
    Date
    2008-08-25
    Author
    Rincón-Rosenbaum, Charlene
    Metadata
    Show full item record
    Abstract
    The overall objective of this work was to assess the suitability of poly(3-octylthiophene) (P3OT) to sustain MC3T3-E1 osteoblast attachment and growth. The central hypothesis was that specific P3OT film properties (i.e., thickness, film preparation conditions, and level of doping) are able to regulate osteoblast functions (i.e., attachment and proliferation). Discrete and combinatorial techniques were utilized to prepare and characterize thin films of P3OT, a semiconductor in its undoped state, and to study its interaction with MC3T3-E1 osteoblasts. In this work we demonstrate that P3OT is a suitable surface to sustain MC3T3-E1 attachment and proliferation with no observed cytotoxicity. We show that P3OT has an effect on MC3T3-E1 attachment and proliferation as area, circularity, and proliferation ratio are significantly different for P3OT compared to control surfaces. We also demonstrate that P3OT doping and film preparation conditions have an effect on osteoblast attachment and proliferation but that thickness over a low and high range does not affect osteoblast functions. This work is significant because it contributes to the growing area of conducting polymers in biomedical applications and establishes P3OT as a potential cell substrate that sustains MC3T3-E1 attachment and promotes high levels of cell proliferation.
    URI
    http://hdl.handle.net/1853/26493
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Chemical and Biomolecular Engineering Theses and Dissertations [1516]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology