• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Flicker noise in cmos lc oscillators

    Thumbnail
    View/Open
    douglas_dale_s_200812.pdf (3.537Mb)
    Date
    2008-11-10
    Author
    Douglas, Dale Scott
    Metadata
    Show full item record
    Abstract
    Sources of flicker noise generation in the cross-coupled negative resistance oscillator (NMOS, PMOS, and CMOS) are explored. Also, prior and current work in the area of phase noise modeling is reviewed, including the work of Leeson, Hajimiri, Hegazi, and others, seeking the mechanisms by which flicker noise is upconverted. A Figure of Merit (FOM) methodology suitable to the 1/f3 phase noise region is also developed, which allows a new quantity, FOM1, to be defined. FOM1 is proportional to flicker noise upconverted, thus allowing the effectiveness of flicker noise upconversion suppression techniques to be evaluated, despite possibly changing bias points or tank Q, which would change phase noise and FOM in the 1/f2 region. The work of Hajimiri is extended with a simple Amplitude ISF DC component estimator for the special case of LC CMOS oscillators. A method of adaptive control of an oscillator core is presented, as well, comprised of a CMOS oscillator with a digitally adjustable N and P width, and a circuit (which is essentially a tracking ADC) which repeatedly adjusts the relative N to P width dependent on the estimate to maintain the condition of minimum flicker noise upconversion. A fixed calibration constant is sufficient to allow convergence to within 0.7dB of optimal FOM1 for all cases of N width, for a varactorless oscillator test cell. Finally, a circuit is proposed which would allow the flicker noise reduction technique of cycling to accumulation to be applied to continuous time oscillators, but is not rigorously vetted.
    URI
    http://hdl.handle.net/1853/26550
    Collections
    • Georgia Tech Theses and Dissertations [23403]
    • School of Electrical and Computer Engineering Theses and Dissertations [3303]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology