• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Lattice-Boltzmann method and immiscible two-phase flow

    Thumbnail
    View/Open
    rannou_guillaume_200812_mast.pdf (1.704Mb)
    Date
    2008-11-19
    Author
    Rannou, Guillaume
    Metadata
    Show full item record
    Abstract
    This thesis focuses on the lattice-Boltzmann method (LBM) and its ability to simulate immiscible two-phase flow. We introduce the main lattice-Boltzmann-based approaches for analyzing two-phase flow: the color-fluid model by Gunstensen, the interparticle-potential model by Shan and Chen, the free-energy model by Swift and Orlandini, and the mean-field model by He. The first objective is to assess the ability of these methods to maintain continuity at the interface of two fluids, especially when the two fluids have different viscosities or densities. Continuity issues have been mentioned in the literature but have never been quantified. This study presents a critical comparison of the four lattice-Boltzmann-based approaches for analyzing two-phase flow by analyzing the results of the two-phase Poiseuille flow for different viscosity ratios and density ratios. The second objective is to present the capability of the most recent version of the color-fluid model for simulating 3D flows. This model allows direct control over the surface tension at the interface. We demonstrate the ability of this model to simulate surface tension effects at the interface (Laplace bubble test), stratified two-phase flows Poiseuille two-phase flow), and bubble dynamics (the free rise of a bubble in a quiescent viscous fluid).
    URI
    http://hdl.handle.net/1853/26560
    Collections
    • Georgia Tech Theses and Dissertations [23403]
    • School of Mechanical Engineering Theses and Dissertations [4008]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology