• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Estimation and optimization of layout parasitics for silicon-based millimeter-wave integrated circuits

    Thumbnail
    View/Open
    sen_padmanava_200712_phd.pdf (31.41Mb)
    Date
    2007-11-06
    Author
    Sen, Padmanava
    Metadata
    Show full item record
    Abstract
    Millimeter-wave has been a medium for automotive, sensor, and defense applications for a long time. But, a fully integrated silicon-based transceiver at 60 GHz or higher frequencies has become the driving force for recent research activities in integrated millimeter-wave (MMW) circuit designs. However, no integrated compact high-performance millimeter-wave system can be designed without accurate estimation and optimization of layout parasitics. In this dissertation, the estimation, modeling and optimization of parasitic effects as well as the verification of extraction methodologies for RF/MMW applications are investigated. Different circuit design- and layout-examples are considered with stress on the inclusion and optimization of wire/interconnect parasitics. A novel methodology is proposed to reduce the number of design-passes and to include layout parasitics in the design optimization procedure. An automated verification procedure for existing parasitic extraction tools is developed. Neural-network-based models are used to demonstrate the effectiveness of artificial intelligence techniques for characterizing parasitic components. The parasitic sensitivities for selected millimeter-wave circuits are demonstrated, and a parasitic benchmarking procedure is developed using MMW oscillators. Measurement results of several circuits that are implemented in state-of-the-art CMOS and SiGe-BiCMOS processes are used to demonstrate the role of parasitics and the systematic design methodology including parasitics.
    URI
    http://hdl.handle.net/1853/26585
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology