• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Cellulose fiber dissolution in sodium hydroxide solution at low temperature: dissolution kinetics and solubility improvement

    Thumbnail
    View/Open
    wang_ying_200812_phd.pdf (5.724Mb)
    Date
    2008-07-31
    Author
    Wang, Ying
    Metadata
    Show full item record
    Abstract
    Sodium hydroxide can cause cellulose to swell and can even dissolve cellulose in a narrow range of the phase diagram. It was found that for cellulose with low to moderate degree of polymerization, the maximal solubility occurs with 8~10% soda solution. In recent years, researchers found that sodium hydroxide with urea at cold temperature can dissolve cellulose better than sodium hydroxide alone. However, the lack of sufficient understanding of the NaOH and NaOH/urea dissolution process significantly constrains its applications. In order to fully understand the cellulose dissolution in alkali system, there are several aspects of problems that need to be addressed. Our focus in this study is in the interaction of cellulose with alkali solution at low temperatures, the improvement of its solubility, and the effect of hemicellulose and lignin.
    URI
    http://hdl.handle.net/1853/26632
    Collections
    • Georgia Tech Theses and Dissertations [22398]
    • School of Chemical and Biomolecular Engineering Theses and Dissertations [1438]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology