• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Materials Science and Engineering (MSE)
    • Center for Nanoscience and Nanotechnology
    • Center for Nanoscience and Nanotechnology Publications
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Materials Science and Engineering (MSE)
    • Center for Nanoscience and Nanotechnology
    • Center for Nanoscience and Nanotechnology Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mechanical behavior and magnetic separation of quasi-one-dimensional SnO₂ nanostructures: A technique for achieving monosize nanobelts/nanowires

    Thumbnail
    View/Open
    2005_33_05_JAP_2.pdf (390.0Kb)
    Date
    2005-03-25
    Author
    Jin, Z. Q.
    Ding, Yong
    Wang, Z. L. (Zhong Lin)
    Metadata
    Show full item record
    Abstract
    The as-synthesized nanowires and nanobelts usually have a large size distribution. We demonstrate here a ball milling technique for narrowing the size distribution of oxide nanobelts and nanowires. High-resolution scanning and transmission electron microscopy reveals that the one-dimensional SnO₂ nanostructures with size >150 nm are sensitive to the milling effect and most of them were fractured into nanoparticles even after a short-time milling. These nanoparticles contain magnetic Fe components, which could be effectively separated from those nanobelts by employing a magnetic field. This feature promises a potentials application in the nanostructured materials separation. It was also found that the dominant size of the survived nanostructures is <100 nm. The good mechanical behavior of the nanostructures are not only related to the superior mechanical toughness due to small size, but also related to the low defect density.
    URI
    http://hdl.handle.net/1853/27295
    Collections
    • Center for Nanoscience and Nanotechnology Publications [105]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology