• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Efficiently mapping high-performance early vision algorithms onto multicore embedded platforms

    Thumbnail
    View/Open
    apewokin_senyo_b_200812_phd.pdf (3.560Mb)
    Date
    2009-01-09
    Author
    Apewokin, Senyo
    Metadata
    Show full item record
    Abstract
    The combination of low-cost imaging chips and high-performance, multicore, embedded processors heralds a new era in portable vision systems. Early vision algorithms have the potential for highly data-parallel, integer execution. However, an implementation must operate within the constraints of embedded systems including low clock rate, low-power operation and with limited memory. This dissertation explores new approaches to adapt novel pixel-based vision algorithms for tomorrow's multicore embedded processors. It presents : - An adaptive, multimodal background modeling technique called Multimodal Mean that achieves high accuracy and frame rate performance with limited memory and a slow-clock, energy-efficient, integer processing core. - A new workload partitioning technique to optimize the execution of early vision algorithms on multi-core systems. - A novel data transfer technique called cat-tail dma that provides globally-ordered, non-blocking data transfers on a multicore system. By using efficient data representations, Multimodal Mean provides comparable accuracy to the widely used Mixture of Gaussians (MoG) multimodal method. However, it achieves a 6.2x improvement in performance while using 18% less storage than MoG while executing on a representative embedded platform. When this algorithm is adapted to a multicore execution environment, the new workload partitioning technique demonstrates an improvement in execution times of 25% with only a 125 ms system reaction time. It also reduced the overall number of data transfers by 50%. Finally, the cat-tail buffering technique reduces the data-transfer latency between execution cores and main memory by 32.8% over the baseline technique when executing Multimodal Mean. This technique concurrently performs data transfers with code execution on individual cores, while maintaining global ordering through low-overhead scheduling to prevent collisions.
    URI
    http://hdl.handle.net/1853/28256
    Collections
    • Georgia Tech Theses and Dissertations [23403]
    • School of Electrical and Computer Engineering Theses and Dissertations [3303]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology