• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • The Wallace H. Coulter Department of Biomedical Engineering (BME)
    • Biomedical Imaging Lab (Minerva Research Group)
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • The Wallace H. Coulter Department of Biomedical Engineering (BME)
    • Biomedical Imaging Lab (Minerva Research Group)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Particle Filtering for Geometric Active Contours with Application to Tracking Moving and Deforming Objects

    Thumbnail
    View/Open
    2005_IEEE_02.pdf (399.0Kb)
    Date
    2005-06
    Author
    Rathi, Yogesh
    Vaswani, Namrata
    Tannenbaum, Allen R.
    Yezzi, Anthony
    Metadata
    Show full item record
    Abstract
    Geometric active contours are formulated in a manner which is parametrization independent. As such, they are amenable to representation as the zero level set of the graph of a higher dimensional function. This representation is able to deal with singularities and changes in topology of the contour. It has been used very successfully in static images for segmentation and registration problems where the contour (represented as an implicit curve) is evolved until it minimizes an image based energy functional. But tracking involves estimating the global motion of the object and its local deformations as a function of time. Some attempts have been made to use geometric active contours for tracking, but most of these minimize the energy at each frame and do not utilize the temporal coherency of the motion or the deformation. On the other hand, tracking algorithms using Kalman filters or particle filters have been proposed for finite dimensional representations of shape. But these are dependent on the chosen parametrization and cannot handle changes in curve topology. In the present work, we formulate a particle filtering algorithm in the geometric active contour framework that can be used for tracking moving and deforming objects.
    URI
    http://hdl.handle.net/1853/29234
    Collections
    • Biomedical Imaging Lab (Minerva Research Group) [210]
    • Laboratory of Computational Computer Vision Publications [106]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology