• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • The Wallace H. Coulter Department of Biomedical Engineering (BME)
    • Biomedical Imaging Lab (Minerva Research Group)
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • The Wallace H. Coulter Department of Biomedical Engineering (BME)
    • Biomedical Imaging Lab (Minerva Research Group)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Label Space: A Coupled Multi-shape Representation

    Thumbnail
    View/Open
    2008_miccai_07.pdf (211.1Kb)
    Date
    2008-09
    Author
    Malcolm, James G.
    Rathi, Yogesh
    Shenton, Martha E.
    Tannenbaum, Allen R.
    Metadata
    Show full item record
    Abstract
    Richly labeled images representing several sub-structures of an organ occur quite frequently in medical images. For example, a typical brain image can be labeled into grey matter, white matter or cerebrospinal fluid, each of which may be subdivided further. Many manipulations such as interpolation, transformation, smoothing, or registration need to be performed on these images before they can be used in further analysis. In this work, we present a novel multi-shape representation and compare it with the existing representations to demonstrate certain advantages of using the proposed scheme. Specifically, we propose label space, a representation that is both flexible and well suited for coupled multishape analysis. Under this framework, object labels are mapped to vertices of a regular simplex, e.g. the unit interval for two labels, a triangle for three labels, a tetrahedron for four labels, etc. This forms the basis of a convex linear structure with the property that all labels are equally spaced. We will demonstrate that this representation has several desirable properties: algebraic operations may be performed directly, label uncertainty is expressed equivalently as a weighted mixture of labels or in a probabilistic manner, and interpolation is unbiased toward any label or the background. In order to demonstrate these properties, we compare label space to signed distance maps as well as other implicit representations in tasks such as smoothing, interpolation, registration, and principal component analysis.
    URI
    http://hdl.handle.net/1853/29402
    Collections
    • Biomedical Imaging Lab (Minerva Research Group) [210]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology