First Integrals and Normal Forms for Germs of Analytic Vector Fields
Abstract
For a germ of analytic vector fields, the existence of first integrals, resonance and the convergence of normalization transforming the vector field to a normal form are closely related. In this paper we first provide a link between the number of first integrals and the resonant
relations for a quasi-periodic vector field, which generalizes one of the Poincaré’s classical results [18] on autonomous systems and Theorem 5 of [14] on periodic systems. Then in the space of analytic autonomous systems in C[2n] with exactly n resonances and n functionally independent first
integrals, our results are related to the convergence and generic divergence of the normalizations. Lastly for a planar Hamiltonian system it is well known that the system has an isochronous center if and only if it can be linearizable in a neighborhood of the center. Using the Euler-Lagrange
equation we provide a new approach to its proof.