• Login
    View Item 
    •   SMARTech Home
    • College of Sciences (CoS)
    • School of Mathematics
    • School of Mathematics Faculty Publications
    • View Item
    •   SMARTech Home
    • College of Sciences (CoS)
    • School of Mathematics
    • School of Mathematics Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On the Second Eigenvalue of the Laplace Operator Penalized by Curvature

    Thumbnail
    View/Open
    94-179.pdf (136.4Kb)
    Date
    1994
    Author
    Harrell, Evans M.
    Metadata
    Show full item record
    Abstract
    Consider the operator - ∇^2 - q(κ), where - ∇^2 is the (positive) Laplace-Beltrami operator on a closed manifold of the topological type of the two-sphere S^2 and q is a symmetric non-negative quadratic form in the principal curvatures. Generalizing a well-known theorem of J. Hersch for the Laplace-Beltrami operator alone, it is shown in this note that the second eigenvalue λ [1] is uniquely maximized, among manifolds of fixed area, by the true sphere.
    URI
    http://hdl.handle.net/1853/29542
    Collections
    • School of Mathematics Faculty Publications [119]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology