The effects of plume property variation on odor plume navigation in turbulent boundary layer flows

Show full item record

Please use this identifier to cite or link to this item:

Title: The effects of plume property variation on odor plume navigation in turbulent boundary layer flows
Author: Page, Jennifer Lynn
Abstract: A significant body of research has focused on tracking behaviors of predators responding to prey odor plumes, yet little is known about the specific mechanisms by which predators make decisions during tracking that lead them to a source. This dissertation advances the current knowledge of plume tracking behavior by examining blue crab tracking behavior over a large range of bed-roughnesses (thereby manipulating ambient levels of turbulence), and interpreting these results with respect to chemical signal structure derived from separate examinations of plume characteristics as determined by planar laser induced fluorescence (PLIF). Foraging success and the speed of blue crabs attempting to locate the odorant source both decline consistently with increasing bed roughness. In contrast, steering (path linearity) appears unaffected by bed roughness induced turbulence. The spatial arrangement of blue crab chemosensors combined with the three-dimensional structure of odorant plumes accounts for the differential effects of turbulence on the speed and success of crab tracking behavior. Separate examinations of tracking behavior and plume properties cannot directly examine hypotheses concerning the utility of specific chemical signal properties. In order to make a direct link between cue and behavior, three-dimensional laser induced fluorescence (3DLIF) was used to analyze three-dimensional plume structure and concentration of odor filaments that reach blue crab sensory structures. The corresponding tracking behavior was simultaneously recorded and then analyzed with a motion analysis system. These data provide the most comprehensive examination of odor signal input-behavioral output functions for animals in turbulent plumes. Crabs do not react differentially in response to the absolute concentration of antennule spikes above threshold at their antennules but do show a state-dependent acceleration response to antennule spikes. Signals arriving at the leg sensors of blue crabs help mediate upstream motion and signal change across a single set of leg sensors is sufficient to induce turning during upstream motion. Blue crabs decrease the height of their antennules in correspondence with changing plume properties as they approach the source and the timing of signals arriving at the antennules appears to affect upstream motion.
Type: Dissertation
Date: 2009-05-13
Publisher: Georgia Institute of Technology
Subject: State dependent
Signal structure
Integrating signals
Rotational velocity
Course correction
Signal intermittency
Vertical variation
Autonomous vehicles
Search strategy
Olfactory receptors
Bait markers
Department: Biology
Advisor: Committee Chair: Weissburg, Marc; Committee Member: Hay, Mark; Committee Member: Kubanek, Julia; Committee Member: Webster, Donald; Committee Member: Yen, Jeannette
Degree: Ph.D.

All materials in SMARTech are protected under U.S. Copyright Law and all rights are reserved, unless otherwise specifically indicated on or in the materials.

Files in this item

Files Size Format View
Page_Jennifer_L_200908_phd.pdf 2.858Mb PDF View/ Open

This item appears in the following Collection(s)

Show full item record