Show simple item record

dc.contributor.authorRajamanickam, Siva
dc.date.accessioned2009-09-21T18:46:56Z
dc.date.available2009-09-21T18:46:56Z
dc.date.issued2009-08-26
dc.identifier.urihttp://hdl.handle.net/1853/30190
dc.descriptionSiva Rajamanickam, PhD candidate in the CISE department at the University of Florida presented a lecture on August 26, 2009 from 2 to 3 pm in room 1116E of the Klaus Advanced Computing Building.
dc.descriptionHPC Lecture
dc.description.abstractWith the success of Basic Linear Algebra Subroutines (BLAS) in using the memory efficiently, the algorithms with vector operations (BLAS2) have given way to algorithms with matrix operations (BLAS3). In some cases, BLAS3 based algorithms are successful even with the cost of doing additional floating point operations and using additional memory. In this talk, I will talk about two problems where algorithms with vector operations when combined with blocking can perform better than BLAS3 based algorithms. Band reduction methods are mainly used in computing the eigen value decomposition and singular value decomposition of band matrices. In the first part of this talk, I will outline a blocking scheme for plane rotations. The blocked plane rotations when coupled with a pipelining scheme leads to fewer floating point operations and memory usage than the BLAS3 based band reduction methods. The blocked method is also able to extract the same performance benefits from the cache as the BLAS3 based methods leading to a faster band reduction method. I will also show how we can exploit the zeros while finding the eigen and singular vectors. In the second part of the talk, I will introduce a method for computing the bidiagonalization of a sparse upper triangular matrix R. In this method, we exploit the sparsity of R and use plane rotations to reduce it to the bidiagonal form. We choose the rotations to minimize the fill generated in R itself. I will show how to extend this method to use dynamic blocking and the pipelining scheme to arrive at an efficient R-bidiagonalization method for computing the sparse SVD.en
dc.language.isoen_USen
dc.publisherGeorgia Institute of Technologyen
dc.relation.ispartofseriesComputational Science and Engineering Seminar Seriesen_US
dc.subjectSparse SVDen
dc.subjectBand reductionen
dc.subjectSparse direct methodsen
dc.titleBlocked Plane Rotations for Band Reduction and Sparse SVDen
dc.typeLectureen
dc.typeVideoen
dc.contributor.corporatenameUniversity of Florida
dc.contributor.corporatenameGeorgia Institute of Technology. School of Computational Science and Engineering


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record