• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • The Wallace H. Coulter Department of Biomedical Engineering (BME)
    • Biomedical Imaging Lab (Minerva Research Group)
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • The Wallace H. Coulter Department of Biomedical Engineering (BME)
    • Biomedical Imaging Lab (Minerva Research Group)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Low cost, high performance robot design utilizing off-the-shelf parts and the Beowulf concept, The Beobot project

    Thumbnail
    View/Open
    2003_spie_001pv.pdf (675.0Kb)
    Date
    2003-10
    Author
    Mundhenk, T. Nathan
    Ackerman, Christopher
    Chung, Daesu
    Dhavale, Nitin
    Hudson, Brian
    Hirata, Reid
    Pichon, Eric
    Shi, Zhan
    Tsui, April
    Itti, Laurent
    Metadata
    Show full item record
    Abstract
    Utilizing off the shelf low cost parts, we have constructed a robot that is small, light, powerful and relatively inexpensive (< $3900). The system is constructed around the Beowulf concept of linking multiple discrete computing units into a single cooperative system. The goal of this project is to demonstrate a new robotics platform with sufficient computing resources to run biologically-inspired vision algorithms in real-time. This is accomplished by connecting two dual-CPU embedded PC motherboards using fast gigabit Ethernet. The motherboards contain integrated Firewire, USB and serial connections to handle camera, servomotor, GPS and other miscellaneous inputs/outputs. Computing systems are mounted on a servomechanism-controlled off-the-shelf “Off Road” RC car. Using the high performance characteristics of the car, the robot can attain relatively high speeds outdoors. The robot is used as a test platform for biologically-inspired as well as traditional robotic algorithms, in outdoor navigation and exploration activities. Leader following using multi blob tracking and segmentation, and navigation using statistical information and decision inference from image spectral information are discussed. The design of the robot is opensource and is constructed in a manner that enhances ease of replication. This is done to facilitate construction and development of mobile robots at research institutions where large financial resources may not be readily available as well as to put robots into the hands of hobbyists and help lead to the next stage in the evolution of robotics, a home hobby robot with potential real world applications.
    URI
    http://hdl.handle.net/1853/31254
    Collections
    • Biomedical Imaging Lab (Minerva Research Group) [210]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology