Self-assembly of Interfacially Confined Sheet Forming Peptides

Show full item record

Please use this identifier to cite or link to this item: http://hdl.handle.net/1853/33061

Title: Self-assembly of Interfacially Confined Sheet Forming Peptides
Author: Tu, Raymond
Abstract: Periodically sequenced peptides can be confined to interfaces and assembled into patterns that present chemical functionalities with exceptional spatial precision. The role of dynamics during the assembly of these peptides appears to be very important for inorganic nucleation and growth. Our work applies periodically sequenced sheet-forming peptides at interfaces to explore the dynamics of assembly. The peptide molecules are rationally designed to have amphiphilic properties and a propensity for sheet-like secondary structure. These designed peptides are deposited at the air-water interface to explore the dynamics of self-assembly and investigate their 2D order. To characterize the phase behavior, we apply Langmuir Blodgett techniques and Brewster angle microscopy. Thermodynamic analysis of structure formation with increasing pressure allows us to understand the nature of self-assembly with iterative changes in the peptide sequence. Additionally, we look at the dynamics of the self-assembled state, where the organic phase switches between short- and long-range order as a function of surface pressure. This model system allows us to explore our underlying hypothesis that the time scale of the confined peptide phase-transitions defines the length-scale of the crystalline phase. This is in contrast to a system that starts with a well-ordered preformed template that defines the mineral phase. We have shown that our model peptides can effectively be used to control the polycrystallinity in gold by controlling the surface pressure and diffusive time scales at the interface.
Description: Presented on April 21, 2010 from 4-5 pm in room G011 of the Molecular Science and Engineering Building on the Georgia Tech Campus. Runtime: 57:42 minutes
Type: Lecture
Video
URI: http://hdl.handle.net/1853/33061
Date: 2010-04-21
Contributor: Georgia Institute of Technology. School of Chemical and Biomolecular Engineering
City University of New York. City College
Publisher: Georgia Institute of Technology
Subject: Materials processing
Nanotechnology
Peptide
Self-assembly

All materials in SMARTech are protected under U.S. Copyright Law and all rights are reserved, unless otherwise specifically indicated on or in the materials.

Files in this item

Files Size Format View Description
flyer.pdf 13.16Kb PDF View/ Open Flyer
tu.mp4 152.2Mb MPEG-4 video View/ Open Download Video
tu_streaming.html 914bytes HTML View/ Open Streaming Video

This item appears in the following Collection(s)

Show full item record