Mapping Tasks into Fault Tolerant Manipulators
Abstract
The application of robots in critical missions in hazardous environments requires the development of reliable or fault tolerant manipulators. In this paper, we define fault tolerance
as the ability to continue the performance of a task after immobilization of a joint due to failure. Initially, no joint limits are considered, in which case we prove the existence
of fault tolerant manipulators and develop an
analysis tool to determine the fault tolerant work space.
We also derive design templates for spatial fault tolerant manipulators. When joint limits are introduced, analytic solutions become infeasible but instead a numerical design
procedure can be used, as is illustrated through an example.