Connectivity Compression for Irregular Quadrilateral Meshes

Show full item record

Please use this identifier to cite or link to this item:

Title: Connectivity Compression for Irregular Quadrilateral Meshes
Author: King, Davis ; Rossignac, Jaroslaw R. ; Szymczak, Andrzej
Abstract: Applications that require Internet access to remote 3D datasets are often limited by the storage costs of 3D models. Several compression methods are available to address these limits for objects represented by triangle meshes. Many CAD and VRML models, however, are represented as quadrilateral meshes or mixed triangle/quadrilateral meshes, and these models may also require compression. We present an algorithm for encoding the connectivity of such quadrilateral meshes, and we demonstrate that by preserving and exploiting the original quad structure, our approach achieves encodings 30 - 80% smaller than an approach based on randomly splitting quads into triangles. We present both a code with a proven worst-case cost of 3 bits per vertex (or 2.75 bits per vertex for meshes without valence-two vertices) and entropy-coding results for typical meshes ranging from 0.3 to 0.9 bits per vertex, depending on the regularity of the mesh. Our method may be implemented by a rule for a particular splitting of quads into triangles and by using the compression and decompression algorithms introduced in [Rossignac99] and [Rossignac&Szymczak99]. We also present extensions to the algorithm to compress meshes with holes and handles and meshes containing triangles and other polygons as well as quads.
Type: Technical Report
Date: 1999
Relation: GVU Technical Report;GIT-GVU-99-36
Publisher: Georgia Institute of Technology
Subject: Quadrilateral mesh
Mesh compression
Graph encoding
Polygon mesh

All materials in SMARTech are protected under U.S. Copyright Law and all rights are reserved, unless otherwise specifically indicated on or in the materials.

Files in this item

Files Size Format View
99-36.pdf 289.5Kb PDF View/ Open

This item appears in the following Collection(s)

Show full item record