• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • The Wallace H. Coulter Department of Biomedical Engineering (BME)
    • Biomedical Imaging Lab (Minerva Research Group)
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • The Wallace H. Coulter Department of Biomedical Engineering (BME)
    • Biomedical Imaging Lab (Minerva Research Group)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Geometric Approach to Joint 2D Region-Based Segmentation and 3D Pose Estimation Using a 3D Shape Prior

    Thumbnail
    View/Open
    2010_siam_jis_001.pdf (7.077Mb)
    Date
    2010-03-03
    Author
    Dambreville, Samuel
    Sandhu, Romeil
    Yezzi, Anthony
    Tannenbaum, Allen R.
    Metadata
    Show full item record
    Abstract
    In this work, we present an approach to jointly segment a rigid object in a two-dimensional (2D) image and estimate its three-dimensional (3D) pose, using the knowledge of a 3D model. We naturally couple the two processes together into a shape optimization problem and minimize a unique energy functional through a variational approach. Our methodology differs from the standard monocular 3D pose estimation algorithms since it does not rely on local image features. Instead, we use global image statistics to drive the pose estimation process. This confers a satisfying level of robustness to noise and initialization for our algorithm and bypasses the need to establish correspondences between image and object features. Moreover, our methodology possesses the typical qualities of region-based active contour techniques with shape priors, such as robustness to occlusions or missing information, without the need to evolve an infinite dimensional curve. Another novelty of the proposed contribution is to use a unique 3D model surface of the object, instead of learning a large collection of 2D shapes to accommodate the diverse aspects that a 3D object can take when imaged by a camera. Experimental results on both synthetic and real images are provided, which highlight the robust performance of the technique in challenging tracking and segmentation applications.
    URI
    http://hdl.handle.net/1853/34057
    Collections
    • Biomedical Imaging Lab (Minerva Research Group) [210]
    • Laboratory of Computational Computer Vision Publications [106]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology