A note on linear systems on K-3 surfaces

Show simple item record

dc.contributor.author Tannenbaum, Allen R.
dc.date.accessioned 2010-06-29T18:57:33Z
dc.date.available 2010-06-29T18:57:33Z
dc.date.issued 1982-09
dc.identifier.citation Allen Tannenbaum, "A note on linear systems on K-3 surfaces," Proceedings of the American Mathematical Society, Vol. 86, No.1 (September 1982) 6-9 en_US
dc.identifier.issn 1088-6826
dc.identifier.uri http://hdl.handle.net/1853/34060
dc.description ©1982, American Mathematical Society. First published in Proceedings of the American Mathematical Society in Vol. 86, No.1 (September 1982) by the American Mathematical Society. en_US
dc.description DOI: 10.1090/S0002-9939-1982-0663853-7
dc.description.abstract A simple necessary and sufficient condition is given for a general member of the complete linear system Y to be irreducible and nonsingular where Y is a reduced, connected curve on a K-3 surface. en_US
dc.language.iso en_US en_US
dc.publisher Georgia Institute of Technology en_US
dc.subject K3 surfaces en_US
dc.subject Algebraic smooth minimal complete surfaces en_US
dc.subject Surfaces and higher-dimensional varieties en_US
dc.subject Cycles and subschemes en_US
dc.title A note on linear systems on K-3 surfaces en_US
dc.type Article en_US
dc.contributor.corporatename University of Florida. Dept. of Mathematics
dc.publisher.original American Mathematical Society

Files in this item

Files Size Format View
1982-ams_001.pdf 252.0Kb PDF View/ Open

This item appears in the following Collection(s)

Show simple item record