• Login
    View Item 
    •   SMARTech Home
    • College of Sciences (CoS)
    • School of Biological Sciences
    • School of Biology Faculty Publications
    • View Item
    •   SMARTech Home
    • College of Sciences (CoS)
    • School of Biological Sciences
    • School of Biology Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Functional morphology of intertidal seaweeds: adaptive significance of aggregate vs. solitary forms

    Thumbnail
    View/Open
    1984_MEPS_001.pdf (2.019Mb)
    Date
    1984-08-15
    Author
    Taylor, Phillip R.
    Hay, Mark E.
    Metadata
    Show full item record
    Abstract
    Many intertidal seaweeds show a tremendous gradient of morphological form ranging from spatially separated thalli, to thalli that are aggregated into dense turfs. Aggregation of seaweeds into turfs decreases productivity per g organic weight due to crowding of thalli but increases resistance to desiccation. The intertidal distribution of the turf growth form is correlated with the intensity of desiccation stress. Also turfs transplanted into tide pools developed the non-turf morphology, while non-turfs transplanted to emergent substrate either developed the turf form or died. The turf growth form is energetically expensive; apparent productivity of turfs was 23 to 48 % less than that of individuals. Increasing light and nutrients available to turfs by separating the thalli increased apparent productivity by 36 to 113 %. We tested the hypothesis that these turfs minimize energetic costs of this aggregated growth form through the spatial partitioning of photosynthetic and respirative activity. The lower portions of turfs showed less apparent photosynthesis than the upper portions (reductions of 37 to 85 %); however, this spatial partitioning was also found in the individual forms (37 to 63 % reductions) of these relatively simple seaweeds. Spatial differentiation of respiration was similar in turfs and nonturfs. The seaweeds, examined are able to alter the extent of thalli compaction in accordance with varying levels of environmental stress. This phenotypic plasticity allows seaweeds to adopt morphological features that maximize fitness in a wide variety of habitats without being developmentally committed.
    URI
    http://hdl.handle.net/1853/34370
    Collections
    • School of Biology Faculty Publications [227]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology