Error concealment for H.264 video transmission

Show full item record

Please use this identifier to cite or link to this item:

Title: Error concealment for H.264 video transmission
Author: Mazataud, Camille
Abstract: Video coding standards such as H.264 AVC (Advanced Video Coding) rely on predictive coding to achieve high compression efficiency. Predictive coding consists of predicting each frame using preceding frames. However, predictive coding incurs a cost when transmitting over unreliable networks: frames are no longer independent and the loss of data in one frame may affect future frames. In this thesis, we study the effectiveness of Flexible Macroblock Ordering (FMO) in mitigating the effect of errors on the decoded video and propose solutions to improve the error concealment on H.264 decoders. After introducing the subject matter, we present the H.264 profiles and briefly determine their intended applications. Then we describe FMO and justify its usefulness for transmission over lossy networks. More precisely, we study the cost in terms of overheads and the improvements it offers in visual quality for damaged video frames. The unavailability of FMO in most H.264 profiles leads us to design a lossless FMO removal scheme, which allows the playback of FMO-encoded video on non FMO-compliant decoders. Then, we describe the process of removing the FMO structure but also underline some limitations that prevent the application of the scheme. Finally, we assess the induced overheads and propose a model to predict these overheads when FMO Type 1 is employed. Eventually, we develop a new error concealment method to enhance video quality without relying on channel feedback. This method is shown to be superior to existing methods, including those from the JM reference software and can be applied to compensate for the limitations of the scheme proposed FMO-removal scheme. After introducing our new method, we evaluate its performance and compare it to some classical algorithms.
Type: Thesis
Date: 2009-07-08
Publisher: Georgia Institute of Technology
Subject: Error concealment
Video compression
Image processing
Image processing Digital techniques
Coding theory
Department: Electrical and Computer Engineering
Advisor: Committee Chair: Bing, Benny; Committee Member: Chang, Gee-Kung; Committee Member: Juang, Fred
Degree: M.S.

All materials in SMARTech are protected under U.S. Copyright Law and all rights are reserved, unless otherwise specifically indicated on or in the materials.

Files in this item

Files Size Format View
mazataud_camille_200908_mast.pdf 505.9Kb PDF View/ Open

This item appears in the following Collection(s)

Show full item record