• Login
    View Item 
    •   SMARTech Home
    • Center for Experimental Research in Computer Systems (CERCS)
    • CERCS Technical Reports
    • View Item
    •   SMARTech Home
    • Center for Experimental Research in Computer Systems (CERCS)
    • CERCS Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Network-centric Access Control: Models and Techniques

    Thumbnail
    View/Open
    git-cercs-10-08.pdf (449.4Kb)
    Date
    2010-09-21
    Author
    Wang, Ting
    Srivatsa, Mudhakar
    Agrawal, Dakshi
    Metadata
    Show full item record
    Abstract
    In both commercial and defense sectors a compelling need is emerging for rapid, yet secure, dissemination of information to the concerned actors. Traditional approaches to information sharing (such as Multi-Level Security (MLS)) adopted a node-centric model wherein each user (social subjects) and each object (information object) is treated in isolation (e.g., using clearance levels for subjects and sensitivity levels for objects in MLS). Over the last two decades information sharing models have been enriched to partially account for relationships between subjects (e.g., Role-based Access Control (RBAC)), relationships between objects (e.g., Chinese-wall model), and relationships between subjects and objects (e.g., Separation of Duty (SoD) constraints). In this paper, we present a novel network-centric access control paradigm that explicitly accounts for network-effects in information flows, and yet offers scalable and flexible risk estimation regarding access control decisions. The goal of this paper is not to prescribe a risk-model for information flows; instead we enable a class of risk-models by developing scalable algorithms to estimate prior and posterior information flow likelihood using the structure of social and information networks. For instance, our network-centric access control model answers questions of the form: Does subject s already have access (via her social network) to object o? If subject s is given access to object o, what is the likelihood that subject sʼ learns object oʼ (where the subjects s and sʼ are related via the social network and the objects o and oʼ are related via the information network)? This paper makes three contributions. First, we show that several state-of-the-art access control models can be encoded using a network-centric access control paradigm, typically by encoding relationships as network edges (subject-subject, object-object and subject-object). Second, we present a suite of composable operators over social and information networks that enable scalable risk estimation for information flows. Third, we evaluate our solutions using the IBM SmallBlue dataset that was collected over a span of one year from an enterprise social network of size over 40,000.
    URI
    http://hdl.handle.net/1853/36900
    Collections
    • CERCS Technical Reports [193]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology