• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling shock wave propagation in discrete Ni/Al powder mixtures

    Thumbnail
    View/Open
    austin_ryan_a_201012_phd.pdf (15.43Mb)
    Date
    2010-11-15
    Author
    Austin, Ryan A.
    Metadata
    Show full item record
    Abstract
    The focus of this work is on the modeling and simulation of shock wave propagation in reactive metal powder mixtures. Reactive metal systems are non-explosive, solid-state materials that release chemical energy when subjected to sufficiently strong stimuli. Shock loading experiments have demonstrated that ultra-fast chemical reactions can be achieved in certain micron-sized metal powder mixtures. However, the mechanisms of rapid mixing that drive these chemical reactions are currently unclear. The goal of this research is to gain an understanding of the shock-induced deformation that enables these ultra-fast reactions. The problem is approached using direct numerical simulation. In this work, a finite element (FE) model is developed to simulate shock wave propagation in discrete particle mixtures. This provides explicit particle-level resolution of the thermal and mechanical fields that develop in the shock wave. The Ni/Al powder system has been selected for study. To facilitate mesoscale FE simulation, a new dislocation-based constitutive model has been developed to address the viscoplastic deformation of fcc metals at very high strain rates. Six distinct initial configurations of the Ni/Al powder system have been simulated to quantify the effects of powder configuration (e.g., particle size, phase morphology, and constituent volume fractions) on deformation in the shock wave. Results relevant to the degree of shock-induced mixing in the Ni/Al powders are presented, including specific analysis of the thermodynamic state and microstructure of the Ni/Al interfaces that develop during wave propagation. Finally, it is shown that velocity fluctuations at the Ni/Al interfaces (which arise due to material heterogeneity) may serve to fragment the particles down to the nanoscale, and thus provide an explanation of ultra-fast chemical reactions in these material systems.
    URI
    http://hdl.handle.net/1853/37080
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Mechanical Engineering Theses and Dissertations [4087]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology