• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sensor-based prognostics and structured maintenance policies for components with complex degradation

    Thumbnail
    View/Open
    Elwany_Alaa_H_200912_Phd.pdf (1.111Mb)
    Date
    2009-09-23
    Author
    Elwany, Alaa H.
    Metadata
    Show full item record
    Abstract
    We propose a mathematical framework that integrates low-level sensory signals from monitoring engineering systems and their components with high-level decision models for maintenance optimization. Our objective is to derive optimal adaptive maintenance strategies that capitalize on condition monitoring information to update maintenance actions based upon the current state of health of the system. We refer to this sensor-based decision methodology as "sense-and-respond logistics". As a first step, we develop and extend degradation models to compute and periodically update the remaining life distribution of fielded components using in situ degradation signals. Next, we integrate these sensory updated remaining life distributions with maintenance decision models to; (1) determine, in real-time, the optimal time to replace a component such that the lost opportunity costs due to early replacements are minimized and system utilization is increased, and (2) sequentially determine the optimal time to order a spare part such that inventory holding costs are minimized while preventing stock outs. Lastly, we integrate the proposed degradation model with Markov process models to derive structured replacement and spare parts ordering policies. In particular, we show that the optimal maintenance policy for our problem setting is a monotonically non-decreasing control limit type policy. We validate our methodology using real-world data from monitoring a piece of rotating machinery using vibration accelerometers. We also demonstrate that the proposed sense-and-respond decision methodology results in better decisions and reduced costs compared to other traditional approaches.
    URI
    http://hdl.handle.net/1853/37198
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Industrial and Systems Engineering Theses and Dissertations [1457]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology