Show simple item record

dc.contributor.authorHurth, Tobiasen_US
dc.date.accessioned2011-03-04T20:22:40Z
dc.date.available2011-03-04T20:22:40Z
dc.date.issued2010-11-15en_US
dc.identifier.urihttp://hdl.handle.net/1853/37201
dc.description.abstractWe consider a simple one-dimensional random dynamical system with two driving vector fields and random switchings between them. We show that this system satisfies a one force - one solution principle and compute its unique invariant density explicitly. We study the limiting behavior of the invariant density as the switching rate approaches zero and infinity and derive analogues of classical probabilistic results such as the central limit theorem and large deviations principle.en_US
dc.publisherGeorgia Institute of Technologyen_US
dc.subjectOne-dimensional random dynamical systemen_US
dc.subjectLarge deviations principleen_US
dc.subjectCentral limit theoremen_US
dc.subjectInvariant densityen_US
dc.subjectDriving vector fieldsen_US
dc.subjectOne force - one solution principleen_US
dc.subjectRandom switchingsen_US
dc.subject.lcshLimit theorems (Probability theory)
dc.subject.lcshRandom dynamical systems
dc.titleLimit theorems for a one-dimensional system with random switchingsen_US
dc.typeThesisen_US
dc.description.degreeM.S.en_US
dc.contributor.departmentMathematicsen_US
dc.description.advisorCommittee Member: Bakhtin, Yuri; Committee Member: Bunimovich, Leonid; Committee Member: Koltchinskii, Vladimiren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record