• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Advancements in high throughput protein profiling using surface enhanced laser desorption/ionization time of flight mass spectrometry

    Thumbnail
    View/Open
    emanuele_vincent_a_201012_phd.pdf (2.217Mb)
    Date
    2010-11-15
    Author
    Emanuele, Vincent A., II
    Metadata
    Show full item record
    Abstract
    Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI)is one of several proteomics technologies that can be used in biomarker discovery studies. Such studies often have the goal of finding protein markers that predict early onset of cancers such as cervical cancer. The reproducibility of SELDI has been shown to be an issue in the literature. There are numerous sources of error in a SELDI experiment starting with sample collection from patients to the signal processing steps used to estimate the protein mass and abundance values present in a sample. This dissertation is concerned with all aspects of signal processing related to SELDI's use in biomarker discovery projects. In chapter 2, we perform a comprehensive study of the most popular preprocessing algorithms available. Next, in chapter 3, we study the basic statistics of SELDI data acquisition. From here, we propose a quadratic variance measurement model for buffer+matrix only spectra. This model leads us to develop a modified Antoniadis-Sapatinas wavelet denoising algorithm that demonstrates superior performance when compared to MassSpecWavelet, one of the leading techniques for preprocessing SELDI data. In chapter 4, we show that the quadratic variance model 1) extends to real pooled cervical mucus QC data from a clinical study, 2) predicts behavior and reproducibility of peak heights, and 3) finds four times as many reproducible peaks as the vendor-supplied preprocessing programs. The quadratic variance measurement model for SELDI data is fundamental and promises to lead to improved techniques for analyzing the data from clinical studies using this instrument.
    URI
    http://hdl.handle.net/1853/37287
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology