• Login
    View Item 
    •   SMARTech Home
    • Institute for Robotics and Intelligent Machines (IRIM)
    • IRIM Articles and Papers
    • Healthcare Robotics Lab
    • View Item
    •   SMARTech Home
    • Institute for Robotics and Intelligent Machines (IRIM)
    • IRIM Articles and Papers
    • Healthcare Robotics Lab
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The complex structure of simple devices: A survey of trajectories and forces that open doors and drawers

    Thumbnail
    View/Open
    biorob10_everyday_mechanics.pdf (991.3Kb)
    Date
    2010-09
    Author
    Jain, Advait
    Nguyen, Hai
    Rath, Mrinal
    Okerman, Jason
    Kemp, Charles C.
    Metadata
    Show full item record
    Abstract
    Instrumental activities of daily living (IADLs) involve physical interactions with diverse mechanical systems found within human environments. In this paper, we describe our efforts to capture the everyday mechanics of doors and drawers, which form an important sub-class of mechanical systems for IADLs. We also discuss the implications of our results for the design of assistive robots. By answering questions such as “How high are the handles of most doors and drawers?” and “What forces are necessary to open most doors and drawers?”, our approach can inform robot designers as they make tradeoffs between competing requirements for assistive robots, such as cost, workspace, and power. Using a custom motion/force capture system, we captured kinematic trajectories and forces while operating 29 doors and 15 drawers in 6 homes and 1 office building in Atlanta, GA, USA. We also hand-measured the kinematics of 299 doors and 152 drawers in 11 area homes. We show that operation of these seemingly simple mechanisms involves significant complexities, including non-linear forces and large kinematic variation. We also show that the data exhibit significant structure. For example, 91.8% of the variation in the force sequences used to open doors can be represented using a 2-dimensional linear subspace. This complexity and structure suggests that capturing everyday mechanics may be a useful approach for improving the design of assistive robots.
    URI
    http://hdl.handle.net/1853/37352
    Collections
    • Healthcare Robotics Lab [49]
    • Healthcare Robotics Lab Publications [55]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology