• Login
    View Item 
    •   SMARTech Home
    • Institute for Robotics and Intelligent Machines (IRIM)
    • IRIM Articles and Papers
    • Computational Perception & Robotics
    • View Item
    •   SMARTech Home
    • Institute for Robotics and Intelligent Machines (IRIM)
    • IRIM Articles and Papers
    • Computational Perception & Robotics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Efficient Hierarchical Graph-Based Video Segmentation

    Thumbnail
    View/Open
    cvpr2010_videosegmentation.pdf (8.963Mb)
    Date
    2010-06
    Author
    Grundmann, Matthias
    Kwatra, Vivek
    Han, Mei
    Essa, Irfan
    Metadata
    Show full item record
    Abstract
    We present an efficient and scalable technique for spatiotemporal segmentation of long video sequences using a hierarchical graph-based algorithm. We begin by oversegmenting a volumetric video graph into space-time regions grouped by appearance. We then construct a “region graph” over the obtained segmentation and iteratively repeat this process over multiple levels to create a tree of spatio-temporal segmentations. This hierarchical approach generates high quality segmentations, which are temporally coherent with stable region boundaries, and allows subsequent applications to choose from varying levels of granularity. We further improve segmentation quality by using dense optical flow to guide temporal connections in the initial graph. We also propose two novel approaches to improve the scalability of our technique: (a) a parallel out-of-core algorithm that can process volumes much larger than an in-core algorithm, and (b) a clip-based processing algorithm that divides the video into overlapping clips in time, and segments them successively while enforcing consistency. We demonstrate hierarchical segmentations on video shots as long as 40 seconds, and even support a streaming mode for arbitrarily long videos, albeit without the ability to process them hierarchically.
    URI
    http://hdl.handle.net/1853/38305
    Collections
    • Computational Perception & Robotics [213]
    • Computational Perception & Robotics Publications [213]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology