• Login
    View Item 
    •   SMARTech Home
    • Institute for Robotics and Intelligent Machines (IRIM)
    • IRIM Articles and Papers
    • Computational Perception & Robotics
    • View Item
    •   SMARTech Home
    • Institute for Robotics and Intelligent Machines (IRIM)
    • IRIM Articles and Papers
    • Computational Perception & Robotics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Rao-Blackwellized Particle Filter for EigenTracking

    Thumbnail
    View/Open
    Khan04cvpr.pdf (233.6Kb)
    Date
    2004-06
    Author
    Khan, Zia
    Balch, Tucker
    Dellaert, Frank
    Metadata
    Show full item record
    Abstract
    Subspace representations have been a popular way to model appearance in computer vision. In Jepson and Black’s influential paper on EigenTracking, they were successfully applied in tracking. For noisy targets, optimization-based algorithms (including EigenTracking) often fail catastrophically after losing track. Particle filters have recently emerged as a robust method for tracking in the presence of multi-modal distributions. To use subspace representations in a particle filter, the number of samples increases exponentially as the state vector includes the subspace coefficients. We introduce an efficient method for using subspace representations in a particle filter by applying Rao-Blackwellization to integrate out the subspace coefficients in the state vector. Fewer samples are needed since part of the posterior over the state vector is analytically calculated. We use probabilistic principal component analysis to obtain analytically tractable integrals. We show experimental results in a scenario in which we track a target in clutter.
    URI
    http://hdl.handle.net/1853/38361
    Collections
    • Computational Perception & Robotics [213]
    • Computational Perception & Robotics Publications [213]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology