• Login
    View Item 
    •   SMARTech Home
    • Institute for Robotics and Intelligent Machines (IRIM)
    • IRIM Articles and Papers
    • Computational Perception & Robotics
    • View Item
    •   SMARTech Home
    • Institute for Robotics and Intelligent Machines (IRIM)
    • IRIM Articles and Papers
    • Computational Perception & Robotics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Inference In The Space Of Topological Maps: An MCMC-based Approach

    Thumbnail
    View/Open
    Ranganathan04iros.pdf (552.7Kb)
    Date
    2004-09
    Author
    Ranganathan, Ananth
    Dellaert, Frank
    Metadata
    Show full item record
    Abstract
    While probabilistic techniques have been considered extensively in the context of metric maps, no general purpose probabilistic methods exist for topological maps. We present the concept of Probabilistic Topological Maps (PTMs), a sample-based representation that approximates the posterior distribution over topologies given the available sensor measurements. The PTM is obtained through the use of MCMC-based Bayesian inference over the space of all possible topologies. It is shown that the space of all topologies is equivalent to the space of set partitions of all available measurements. While the space of possible topologies is intractably large, our use of Markov chain Monte Carlo sampling to infer the approximate histograms overcomes the combinatorial nature of this space and provides a general solution to the correspondence problem in the context of topological mapping. We present experimental results that validate our technique and generate good maps even when using only odometry as the sensor measurements.
    URI
    http://hdl.handle.net/1853/38451
    Collections
    • Computational Perception & Robotics [213]
    • Computational Perception & Robotics Publications [213]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology